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On the Recursion Formula of the Sampling
Coefficients on the Compact Semisimple Lie Groups
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Abstract

We present an approach to derive the sampling theorem of the
Jacobi transform by using Vretare’s method concerning the determi-
nation of the Fourier coefficients of the compact semisimple Lie groups.
From this, we shall give a recursion formula of the sampling coefficients
of the Jacobi transform.
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1 Introduction

Sampling theorems are one of the basic tools in communication theory
and signal processing. Even now, various types of sampling theorems are
obtained in many papers. The Shannon sampling theorem is well known
as a fundamental tool. A signal function is called to be band–limited if its
band–region is contained in a certain interval. In the terminology of Fourier
analysis, the band–limitedness condition is equivalent to the condition that
the support of the Fourier transform f̃ of f P L2pRq is contained in a certain
interval. The Shannon sampling theorem yields that if a function f P L2pRq
is band–limited, then f can be reconstructed by samples taken at the equidis-
tant sampling points. More preciously, if f P L2pRq satisfies supp f̃ Ď r´π, πs
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then f is reconstructed as follows:

fpxq “
8ÿ

n“´8
fpnqsin πpx ´ nq

πpx ´ nq . (1.1)

This theorem has been generalized in a number of different directions.
In one of them, known as Kramer’s sampling theorem [7], the kernel of the
Fourier transform is replaced by a more general kernel. In paper [11], Zayed
studied Kramer’s sampling theorems in the case when the kernels arise from
the Strum–Liouville boundary valued problems. And from this, he derived
various and new types of sampling theorems. In his paper, we are interesting
to the sampling theorem deduced by the Jacobi differential equation, which
is described below.

Let α, β ą ´1 and consider the following boundary valued problem for
the singular Strum–Liouville differential equation:

y2 ´
„

α2 ´ 1{4
4 sin2px{2q ` β2 ´ 1{4

4 cos2px{2q
j
y “ ´λy, p0 ă x ă πq

|yp0q| ă 8, |ypπq| ă 8.

In terms of the Jacobi function, the solution of this problem can be expressed
as

φpx, λq “
´
sin

x

2

¯α`1{2 ´
cos

x

2

¯β`1{2
R

pα,βq?
λ´γ

pcosxq, (1.2)

where γ “ ρ{2, ρ “ α ` β ` 1 and

R
pα,βq
t pzq “ 2F1

ˆ
´t, t ` ρ;α ` 1;

1 ´ z

2

˙
. (1.3)

In [11], Zayed showed the following version of the sampling theorem.

Theorem 1.1 ([11, Example 4]). For f P L2p0, πq, its Jacobi transform is
defined by

F pλq “
ż π

0

fpxq
´
sin

x

2

¯α`1{2 ´
cos

x

2

¯β`1{2
R

pα,βq?
λ´γ

pcosxqdx. (1.4)

Then F is reconstructed by samples as follows:

(1) When γ ‰ 0, we have

F pλq “
8ÿ

n“0

F ppn ` γq2q p´1qn`12pn ` γqΓpn ` ρq
Γpγ ` ?

λqΓpγ ´ ?
λqrλ ´ pn ` γq2sΓpn ` 1q ;
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(2) When γ “ 0, we have

F pλq “ F p0qsin π
?
λ

π
?
λ

`
8ÿ

n“1

F pn2q2
?
λ sin πp?

λ ´ nq
πpλ ´ n2q .

A more general result was obtained by Everitt, Schöttler and Butzer in [4]
without assuming the existence of the canonical product of the eigenvalues.
And from this, they showed new types of the sampling theorems.

In another direction, the sampling theorems are generalized to the frame-
work of abstract harmonic analysis by replacing R with a locally compact
group. In the case of the locally compact abelian groups, Kluvánek has
proved the sampling theorem in [8]. In the non-abelian case, Dooley showed
in his paper [1] the sampling theorem for the Cartan motion group by using
the techniques of the theory of contraction of Lie group. In [5] Führ and
Gröchenig present an approach to derive the sampling theorems on locally
compact groups from oscillation estimates.

On the other hand, sampling theorems are studied as relative topics of
tomography. In [2] and [3], we study the Fourier reconstruction algorithm and
extend this algorithm to the case of Riemannian symmetric spaces. In [2] we
fix a K-type δ and give the reconstruction formula for the function of type δ
on the Riemannian symmetric space G{K. By using this, the reconstruction
formula for the band–limited function can be formally constructed. And in
the subsequent paper [3], by taking sampling points suitably, we concretely
construct the sampling function of the Radon transform on the complex
hyperbolic space. For another example, Stenzel gave the sampling theorem
which recovers the rapidly decreasing functions on Riemannian symmetric
space from the values of the sampling operator in [9]. He point out his
theorem is closest in our papers [2, 3]. We shall discuss in the next paper
the relationship between the sampling operator defined by Stenzel and our
results in [2, 3].

We shall here describe the context of this paper. In Section 2, for reader’s
convenience, we give a proof of Theorem 1.1 by using the theory of Everitt,
Schöttler and Butzer. In Section 3, applying the theory of Vretare, we con-
struct the recursion formula of the sampling coefficients on the compact
semisimple Lie groups.

2 The proof of Theorem 1.1

We here introduce the method of Everitt, Schöttle and Butzer. In [4],
they only dealed with the case of the Legendre differential equation, and so
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we will apply their method to the case of the Jacobi differential equation and
gives an elementary proof of Theorem 1.1.

Let α, β ą ´1 and set Δα,βptq “ sin2α`1 t cos2β`1 t. Consider the Jacobi

differential equation:

´`
Δα,βptqy1˘1 “ p4λ ` ρ2qΔα,βptqy,

´
0 ă t ă π

2

¯
(2.1)

with the boundary valued conditions

ry, 1sp0q “ ry, 1s
´π

2

¯
“ 0, (2.2)

where r¨, ¨s denotes the bilinear form associated with the differential equa-
tion. In this case both endpoints are limit circle and non-oscillatry. In the
following, we only consider the case γ ‰ 0, since the case γ “ 0 is reduced to
the case of the Legendre differential equation. The pair of the fundamental
solutions of (2.1) is given by!

R
pα,βq?
λ´γ

pcos 2tq, Rpβ,αq?
λ´γ

p´ cos 2tq
)
.

Here R
pα,βq?
λ´γ

denote the Jacobi function described in (1.3). For the sake of

simplicity, we put

Rptq “ R
pα,βq?
λ´γ

pcos 2tq “ 2F1pγ ` ?
λ, γ ´ ?

λ;α ` 1; sin2 tq,
Sptq “ R

pβ,αq?
λ´γ

p´ cos 2tq “ 2F1pγ ` ?
λ, γ ´ ?

λ; β ` 1; cos2 tq.

And we set

ϕ1ptq “ pRptq ´ SptqqΓpγ ` ?
λqΓpγ ´ ?

λq
4Γpα ` 1qΓpβ ` 1q , (2.3)

ϕ2ptq “ pRptq ` SptqqΓpγ ` ?
λqΓpγ ´ ?

λq
4Γpα ` 1qΓpβ ` 1q . (2.4)

After these preparations, the Kramer type kernel Kpx, λq on r0, π{2s is gen-
erated by

Kpx, λq “ rϕ1, 1sp0qϕ2pxq ´ rϕ2, 1sp0qϕ1pxq. (2.5)
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A direct computation implies

rϕ1, 1sp0q “ ´ lim
tÑ0

Δα,βptqϕ1
1ptq

“ ´ lim
tÑ0

pγ2 ´ λqΓpγ ` ?
λqΓpγ ´ ?

λq sin2α`2 t cos2β`2 t

2pβ ` 1qΓpα ` 1qΓpβ ` 1q
ˆ �

2F1pγ ` 1 ` ?
λ, γ ` 1 ´ ?

λ;α ` 2; sin2 tq
` 2F1pγ ` 1 ` ?

λ, γ ` 1 ´ ?
λ; β ` 2; cos2 tq(

“ lim
tÑ0

pγ2 ´ λqΓpγ ` ?
λqΓpγ ´ ?

λq cos2β`2 t

2pβ ` 1qΓpα ` 1qΓpβ ` 1q
ˆ 2F1pγ ` 1 ` ?

λ, γ ` 1 ´ ?
λ; β ` 2; cos2 tq

“ pγ2 ´ λqΓpγ ` ?
λqΓpγ ´ ?

λq
2pβ ` 1qΓpα ` 1qΓpβ ` 1q

ˆ 2F1pβ ´ γ ` 1 ´ ?
λ, β ´ γ ` 1 ` ?

λ; β ` 2; 1q
“ pγ2 ´ λqΓpβ ` 2qΓpα ` 1qΓpγ ` ?

λqΓpγ ´ ?
λq

2pβ ` 1qΓpα ` 1qΓpβ ` 1qΓpγ ` 1 ` ?
λqΓpγ ` 1 ´ ?

λq
“ 1

2
.

By the same computation as above, we also have

rϕ2, 1sp0q “ ´1

2
.

Substituting these into (2.5), we have

Kpx, λq “ Rptq “ R
pα,βq?
λ´γ

pcos 2tq.

Therefore we can get the integral transform

F pλq “
ż π{2

0

fptqRpα,βq?
λ´γ

pcos 2tqΔα,βptqdt. (2.6)
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Similarly, the interpolation function Gpλq is given by

Gpλq “ rK, 1s
´π

2

¯
“ ´2pγ2 ´ λq

α ` 1
lim

tÑπ{2
sin2α`2 t cos2β`2 t

ˆ 2F1pγ ` 1 ` ?
λ, γ ` 1 ´ ?

λ;α ` 2; sin2 tq

“ ´2pγ2 ´ λq
α ` 1

lim
tÑπ{2

sin2α`2 t

ˆ 2F1pα ´ γ ` 1 ´ ?
λ, α ´ γ ` 1 ` ?

λ;α ` 2; sin2 tq

“ ´2Γpα ` 1qΓpβ ` 1q
Γpγ ` ?

λqΓpγ ´ ?
λq . (2.7)

From the expression of (2.7), the zeroes of Gpλq are λn “ pγ`nq2 for n P Zě0

and Theorem 1.1 in [4] yields that λn are taken at the samples of the integral
transform (2.6).

We next compute the sampling function of (2.6). We have from (2.7) that

G1pλq “ Γpα ` 1qΓpβ ` 1qpψpγ ` ?
λq ´ ψpγ ´ ?

λqq?
λΓpγ ` ?

λqΓpγ ´ ?
λq ,

where ψ denotes the polygamma function. We obtain upon taking the limit
λ Ñ λn “ pγ ` nq2 that

G1pλnq “ lim
λÑλn

G1pλq

“ p´1qnΓpα ` 1qΓpβ ` 1qΓpn ` 1q
pn ` γqΓpn ` ρq . (2.8)

Consequently, the sampling function of (2.6) can be written by

Gpλq
G1pλnqpλ ´ λnq “ p´1qn`12pn ` γqΓpn ` ρq

Γpn ` 1qΓpγ ` ?
λqΓpγ ´ ?

λqpλ ´ pn ` γq2q ,

from which we can get the assertion of Theorem 1.1.

3 Notation for Lie groups and root systems

Let g be a semisimple Lie algebra on R and let g “ k`p be a fixed Cartan
decomposition of g. Choose a maximal abelian subspace a Ă p. The Killing
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form x¨, ¨y induces an inner product on a. Let h Ą a be a Cartan subalgebra
and put hk “ h X k. We fix an ordering in a˚ and denote by Σ` the set of
positive restricted roots of g with respect to g. We set ρ “ 1

2

ř
μPΣ` mpμqμ,

where mpμq denotes the multiplicity of μ.
We write u for the corresponding compact real form of g, that is, u “

k ` ?´1p. Denote by Gc the simply connected Lie group with Lie algebra
g and by G, K and U the analytic subgroups of Gc with their Lie algebras
g, k and u, respectively. This permit us to identify the irreducible finite
dimensional representations of Gc with those of G and U . We remark that
U is a maximal compact subgroup of Gc.

Let A “ exp a. We put t “ hk ` ?´1a. Fix an ordering in
?´1t which

is compatible with the one on a. Then t is a Cartan subalgebra of u. We
normalized the Haar measure on U so that the total measure on U is 1 and
denote it by du.

Let G “ KAN be an Iwasawa decomposition of G. For g P G, we
decompose as g “ κpgq expHpgqnpgq, where κpgq P K, Hpgq P a and npgq P
N . For λ P a˚, let H λ “ L2pK{Mq and define the action of G on H λ by

pπλpgqϕqpkq “ ep?´1λ´ρqHpg´1kqϕpκpg´1kqq.
pπλ,H λq is called the spherical principal series representation on G. The
zonal spherical function ϕλ is given by

ϕλpgq “
ż
K

ep?´1λ´ρqpHpg´1kqqdk.

Let pπΛ,H Λq denote the finite dimensional irreducible representation on
U with highest weight Λ P t˚. As shown in [6, Theorem 4.1, p.535], Λ is
characterized as the following conditions:

Λ|hk “ 0,
xΛ, μy
xμ, μy P Zě0 pμ P Σ`q. (3.1)

We write for Δ the set of Λ P t˚ satisfying the relations (3.1). By means of
(3.1), we look upon Λ as an element in ac̊ . It is also known (see for instance
[10]) that ż

U

ΦΛ1pxqΦΛ2pxqdx “
#
0 pΛ1 ‰ Λ2q
1

dΛ1
pΛ1 “ Λ2q . (3.2)

Here dΛ is expressed as

dΛ “ cp?´1ρqcp´?´1ρq
cp?´1pρ ` Λqqcp´?´1pρ ` Λqq , (3.3)
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cpλq denoting the Harish-Chandra c-function.
As mentioned above, the irreducible finite dimensional irreducible repre-

sentations on U can be regarded as the representations on G and Gc and we
simply write them for the same symbol πΛ. We put

Ω “
!
H P a; |μpHq| ă π

2
for any μ P Σ`

)
.

Then as pointed out in [10, p. 353], we have that

ΦΛpexp?´1Hq “ ϕ´?´1pΛ`ρqpexpHq (3.4)

for H P Ω. Since the Iwasawa projection extends holomorphically from
G expp?´1ΩqKc to ac, the zonal spherical function ϕλ can be regarded as a
K-biinvarinat smooth function on U . And we denote it by ϕλ again.

Let f P L2pKzU{Kq and define the integration transform of f with re-
spect to the kernel ϕλ as

F pλq “
ż
U

fpuqϕλpuqdu. (3.5)

Remark. From (3.4), if λ “ ´?´1pΛ ` ρq then the integration transform
(3.5) coincides with the Fourier transform on the compact symmetric space
KzU{K.

Expanding ϕλ in the Fourier series on KzU{K
ϕλpuq “

ÿ
ΛPΔ

dΛcΛΦΛpuq,

cΛ “
ż
U

ϕλpuqΦΛpuqdu (3.6)

and substituting (3.6) into (3.5), we have

F pλq “
ż
U

fpuqϕλpuqdu

“
ÿ
ΛPΔ

dΛcΛ

ż
U

fpuqΦΛpuqdu

“
ÿ
ΛPΔ

dΛcΛ

ż
U

fpuqϕ´?´1pΛ`ρqpuqdu

“
ÿ
ΛPΔ

dΛcΛF p´?´1pΛ ` ρqq. (3.7)

In this way, we can get a sampling expansion of F . We call cΛ the sampling
coefficients on the compact symmetric space KzU{K.
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In the remainder of this section, we suppose that rank g “ 1. Let μ
denote the unique simple root of g with respect to a. We identify ac̊ with C

via the correspondence λ ÞÑ xλ, μy{xμ, μy. For λ P ac̊ , we define Hλ P ac by
μpHλq “ xμ, λy and from this, we identify ac̊ with ac via the correspondence
λ ÞÑ Hλ.

We define the values of α and β by the table below:

G U K α β ρ
R SOp2q t1u ´1

2
´1

2
0

Spinpn, 1q pn ě 2q Spinpn ` 1q Spinpnq n
2

´ 1 ´1
2

n´1
2

SUp1, 1q SUp2q Up1q 0 ´1
2

1
2

SUpn, 1q pn ě 2q SUpn ` 1q SpUpnq ˆ Up1qq n ´ 1 0 n
Sppn, 1q Sppn ` 1q Sppnq ˆ Spp1q 2n ´ 1 1 2n ` 1
F4p´20q F4p´52q Spinp9q 7 3 11

Under these parametrization, the following proposition holds.

Proposition 3.1 ([6, Theorem 4.5, p. 543]). ΦΛ is expressed as follows:

(1) When β “ ´1{2, Λ “ nμ and

ΦnμpexpHq “ P pα,α`1q
n pcosμpHqq;

(2) When β ‰ ´1{2, Λ “ 2nμ and

Φ2nμpexpHq “ P pα,βq
n pcos 2μpHqq.

Here

P pα,βq
n pzq “ 2F1

ˆ
´n, n ` ρ;α ` 1;

1 ´ z

2

˙
is a Jacobi polynomial of degree pα, βq.

As is well known, the Harish-Chandra c-function is expressed as

cpα,βqpλq “ 2ρ´?´1λΓpα ` 1qΓp?´1λq
Γ

`
1
2
p?´1λ ` ρq˘

Γ
`
1
2
p?´1λ ` α ´ β ` 1q˘ . (3.8)

We use (3.8) to compute (3.3) and hence we obtain the following:

When β “ ´1{2,

dnμ “ p2α ` 2n ` 1qn!Γp2α ` n ` 1q
Γp2α ` 2q ; (3.9)



Vol. 12　　No. 124

When β ‰ ´1{2,

d2nμ “ pρ ` 2nqΓpρ ` nqΓpβ ` 1qΓpα ` n ` 1q
n!Γpρ ` 1qΓpβ ` n ` 1qΓpα ` 1q . (3.10)

We also note thatż
U

du “
ż π{2

0

Δα,βptqdt “ 1

2
Bpα ` 1, β ` 1q.

We also know from [6, p. 543] that the zonal spherical function ϕλ is
expressed as

ϕλpexpHq “ 2F1

ˆ
1

2
pρ ´ ?´1λq, 1

2
pρ ` ?´1λq;α ` 1;´ sinh2 μpHq

˙
.

We thus have for H P Ω that

ϕλpexp?´1Hq “ 2F1

ˆ
1

2
pρ ´ ?´1λq, 1

2
pρ ` ?´1λq;α ` 1; sin2 μpHq

˙
.

And from this, we see that

ϕλpexp tHq “ R
pα,βq?´1λ{2´γ

pcosh 2tq,
´
γ “ ρ

2

¯
. (3.11)

Remark. Comparing (3.11) with (2.6), we need to make a change of variable
λ to ´2

?´1
?
λ for the proof of Theorem 1.1.

4 The recursion formula of the sampling coefficients

We keep the notation in the previous section and the assumption that
rank g “ 1. When restricted attention to the rank one case, the sampling
coefficients can be directly computed by using Green’s integral formula. How-
ever for the generalization to the higher rank case, we give a group theoretic
interpretation of Theorem 1.1. In order to compute the sampling coefficients,
we need the following proposition due to Vretare.

Proposition 4.1 ([10, Theorem 4.8]). We set μ0 “ 2μ when β ‰ ´1
2
and

μ0 “ μ when β “ ´1
2
. Then we have for λ P a˚ that

ϕ´?´1pμ0`ρqpgqϕλpgq “ dμ0pλqϕλ´?´1μ0
pgq

` dμ0p´λqϕλ`?´1μ0
pgq ` d0pλqϕλpgq,
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where

dμ0pλq “ cp´?´1pμ0 ` ρqqcp´?´1λq
cp´?´1pμ0 ` λqq (4.1)

and

d0pλq “ 1 ´ dμ0pλq ´ dμ0p´λq. (4.2)

In the remainder of this section we only consider the case β ‰ ´1{2.
For the case β “ ´1{2, we only need to change 2n to n in the following
computations. Applying Proposition 4.1 repeatedly, we see that there exist
the functions dn,kpλq, pk “ ´n,´n ` 1, . . . , n ´ 1, nq such that

ϕ´?´1p2nμ`ρqpgqϕ´2
?´1

?
λpgq “

nÿ
k“´n

dn,kpλqϕ´2
?´1p?

λ`kμqpgq. (4.3)

Remark. From the explicit expression of the Harish-Chandra c-function (3.8),
it is easy to see that the coefficients dn,kpλq are rational functions on λ.

For brevity we set dn,kpλq “ 0 when |k| ą n. With the help of the
expression (3.4), (3.9) and (4.3), we can compute the sampling coefficients
c2nμ defined in (3.6). Indeed, we have

c2nμ “
ż
U

ϕ´2
?´1

?
λpuqΦ2nμpuqdu

“
ż
U

ϕ´2
?´1

?
λpuqϕ´?´1p2nμ`ρqpuqdu (4.4)

“
nÿ

k“´n

2dn,kpλq
Bpα ` 1, β ` 1q

ż π{2

0

R
pα,βq?
λ`kμ´γ

pcos 2tqΔα,βptqdt. (4.5)

By using the formulaż π{2

0

R
pα,βq?
λ`kμ´γ

pcos 2tqΔα,βptqdt “ 2Γpα ` 1qΓpβ ` 1q
Γpγ ` 1 ` k ` ?

λqΓpγ ` 1 ´ k ` ?
λq ,

we have from (4.5) that

c2nμ “
nÿ

k“´n

4Γpρ ` 1qdn,kpλq
Γpγ ` 1 ` k ` ?

λqΓpγ ` 1 ´ k ` ?
λq . (4.6)

Consequently, for getting the explicit expressions of the sampling coefficients,
it is sufficient to compute the values of dn,kpλq. We perform this to deduce
the recursion formula for dn,kpλq.
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We here directly compute (4.4) and give the explicit expression of c2nμ.
From Proposition 3.1 and (3.11), (4.4) is written as

c2nμ “ 2

Bpα ` 1, β ` 1q
ż π{2

0

R
pα,βq?
λ´γ

pcos 2tqRpα,βq
nμ pcos 2tqΔα,βptqdt. (4.7)

We set
Rptq “ R

pα,βq?
λ´γ

pcos 2tq, P ptq “ Rpα,βq
nμ pcos 2tq.

We have from Green’s integral formula that

pλ ´ pn ` γq2q
ż π{2

0

RptqP ptqΔα,βptqdt “ rR,P s
´π

2

¯
. (4.8)

By a straightforward calculation, we obtain

Δα,βptqRptqP 1ptq
“ ´npn ` ρq

α ` 1
Δα,βptq2F1pγ ` ?

λ, γ ´ ?
λ;α ` 1; sin2 tq

ˆ 2F1p´n ` 1, n ` ρ ` 1;α ` 2; sin2 tq
“ ´npn ` ρq

α ` 1
sin2α`1 t2F1pγ ` ?

λ, γ ´ ?
λ;α ` 1; sin2 tq

ˆ 2F1pn ` α ` 1,´n ´ β;α ` 2; sin2 tq
and thus

lim
tÑπ{2

Δα,βptqRptqP 1ptq “ 0.

Similarly we obtain

Δα,βptqR1ptqP ptq
“ 2pγ2 ´ λq

α ` 1
Δα,βptq2F1pγ ` 1 ` ?

λ, γ ` 1 ´ ?
λ;α ` 2; sin2 tq

ˆ 2F1p´n, n ` ρ;α ` 1; sin2 tq
“ 2pγ2 ´ λq

α ` 1
sin2α`1 t2F1pα ´ γ ` 1 ´ ?

λ, α ´ γ ` 1 ` ?
λ;α ` 2; sin2 tq

ˆ 2F1p´n, n ` ρ;α ` 1; sin2 tq
and thus

lim
tÑπ{2

Δα,βptqR1ptqP ptq “ p´1qn2Γpα ` 1q2Γpn ` β ` 1q
Γpγ ` ?

λqΓpγ ´ ?
λqΓpα ` n ` 1q .
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Collecting these, we see that (4.8) yields

pλ ´ pn ` γq2q
ż π{2

0

RptqP ptqΔα,βptqdt “ p´1qn`12Γpα ` 1q2Γpβ ` n ` 1q
Γpγ ` ?

λqΓpγ ´ ?
λqΓpα ` n ` 1q .

Therefore (4.7) implies

c2nμ “ p´1qn`14Γpα ` 1qΓpβ ` 1qΓpβ ` n ` 1q
Γpγ ` ?

λqΓpγ ´ ?
λqΓpα ` n ` 1qΓpρ ` 1qpλ ´ pn ` γq2q .

Let us return our attention to the computation of the recursion formula
of dn,kpλq. We have from Proposition 4.1 that

ϕ´?´1p2μ`ρqpgqϕ´2
?´1

?
λpgq “ d2μp´2

?´1
?
λqϕ´2

?´1p?
λ`μqpgq

` d2μp2?´1
?
λqϕ´2

?´1p?
λ´μqpgq ` d0p´2

?´1
?
λqϕ´2

?´1
?
λpgq.

We use (3.8) to compute (4.1) and (4.2) and immediately obtain that

d2μp2?´1
?
λq “ pγ ` ?

λqpγ´ ` ?
λqpρ ` 1q

2
?
λp2?

λ ` 1qpα ` 1q , (4.9)

d0p2
?´1

?
λq “ 2pα ´ βqpγ2 ´ λq

p1 ´ 4λqpα ` 1q , (4.10)

where γ´ “ pα ´ β ` 1q{2. For simplicity, we set

d`pkq “ d2μp´2
?´1p?

λ ` kμqq,
d´pkq “ d2μp2?´1p?

λ ` kμqq,
d0pkq “ d0p´2

?´1p?
λ ` kμqq.

From these, we see that

d1,´1pλq “ d`p1q, d1,1pλq “ d´p1q, d1,0pλq “ d0p1q. (4.11)

In particular, taking λ “ pn ` γq2, we have from (4.9) and (4.10) that

d2ppn ` γq2q “ pn ` ρqpα ` n ` 1qpρ ` 1q
p2n ` ρqp2n ` ρ ` 1qpα ` 1q ,

d2p´pn ` γq2q “ npβ ` nqpρ ` 1q
p2n ` ρqp2n ` ρ ´ 1qpα ` 1q ,

d0ppn ` γq2q “ 2pα ´ βqnpn ` ρq
pp2n ` ρq2 ´ 1qpα ` 1q .

Hereafter we simply write d` “ d2p´pn ` γq2q, d´ “ d2ppn ` γq2q, d0 “
d0ppn ` γq2q.
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Theorem 4.2. Retain the above notation. the following recursion formula
holds for dn,kpλq.
(1) When n “ 1,

d1,´1pλq “ d`p1q, d1,1pλq “ d´p1q, d1,0pλq “ d0p1q,
where

d`p1q “ pγ ` ?
λqpγ´ ` ?

λqpρ ` 1q
2
?
λp2?

λ ` 1qpα ` 1q ,

d0p1q “ 2pα ´ βqpγ2 ´ λq
p1 ´ 4λqpα ` 1q ;

(2) When n ą 1, dn,kpλq are determined recursively as follows:

d`dn`1,kpλq ` d´dn´1,kpλq
“ d`pk ` 1qdn,k´1pλq ` d´pk ´ 1qdn,k`1pλq ` d0pkqdn,kpλq ´ d0dn,kpλq

Proof. The case when n “ 1 is already shown in (4.9) and (4.10). We suppose
that n ą 1 and compute ϕ´?´1p2μ`ρqpgqϕ´?´1p2nμ`ρqpgqϕ´2

?´1
?
λpgq by the

different two ways. From Proposition 4.1, we have

ϕ´?´1p2μ`ρqpgqϕ´?´1p2nμ`ρqpgq “ d`ϕ´?´1p2nμ`2μ`ρqpgq
` d´ϕ´?´1p2nμ´2μ`ρqpgq ` d0ϕ´?´1p2n`ρqpgq.

And thus we have

ϕ´?´1p2μ`ρqpgqϕ´?´1p2nμ`ρqpgqϕ´2
?´1

?
λpgq

“
n`1ÿ

k“´n´1

d`dn`1,kpλqϕ´2
?´1p?

λ`kμqpgq

`
n´1ÿ

k“´n`1

d´dn´1,kpλqϕ´2
?´1p?

λ`kμqpgq

`
nÿ

k“´n

d0dn,kpλqϕ´2
?´1p?

λ`kμqpgq.
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Secondly using the equation in (4.3), we have

ϕ´?´1p2μ`ρqpgqϕ´?´1p2nμ`ρqpgqϕ´2
?´1

?
λpgq

“ ϕ´?´1p2μ`ρqpgq
#

nÿ
k“´n

dn,kpλqϕ´2
?´1p?

λ`kμqpgq
+

“
nÿ

k“´n

dn,kpλq
!
d`pkqϕ´2

?´1p?
λ`pk`1qμqpgq

` d´pkqϕ´2
?´1p?

λ`pk´1qμqpgq ` d0pkqϕ´2
?´1p?

λ`kμqpgq
)

“
n`1ÿ

k“´n´1

!
d`pk ´ 1qdn,k´1pλq ` d´pk ` 1qdn,k`1pλq

` d0pkqdn,kpλq
)
ϕ´2

?´1p?
λ`kμqpgq.

Compared term by term, we can immediately obtain the desired results.
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