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On the Recursion Formula of the Sampling
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Abstract

We present an approach to derive the sampling theorem of the
Jacobi transform by using Vretare’s method concerning the determi-
nation of the Fourier coefficients of the compact semisimple Lie groups.
From this, we shall give a recursion formula of the sampling coefficients
of the Jacobi transform.
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1 Introduction

Sampling theorems are one of the basic tools in communication theory
and signal processing. Even now, various types of sampling theorems are
obtained in many papers. The Shannon sampling theorem is well known
as a fundamental tool. A signal function is called to be band-limited if its
band-region is contained in a certain interval. In the terminology of Fourier
analysis, the band-limitedness condition is equivalent to the condition that
the support of the Fourier transform f of f € L*(R) is contained in a certain
interval. The Shannon sampling theorem yields that if a function f € L*(R)
is band—limited, then f can be reconstructed by samples taken at the equidis-
tant sampling points. More preciously, if f € L?*(R) satisfies supp f c [—m, 7]
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then f is reconstructed as follows:

2 f(n 51n7rx—n)‘ (11)

n=-—00 .%' o TL)

This theorem has been generalized in a number of different directions.
In one of them, known as Kramer’s sampling theorem [7], the kernel of the
Fourier transform is replaced by a more general kernel. In paper [11], Zayed
studied Kramer’s sampling theorems in the case when the kernels arise from
the Strum-Liouville boundary valued problems. And from this, he derived
various and new types of sampling theorems. In his paper, we are interesting
to the sampling theorem deduced by the Jacobi differential equation, which
is described below.

Let o, B > —1 and consider the following boundary valued problem for
the singular Strum-Liouville differential equation:

R N etV
Y [4sin2(x/2) 40082(x/2)] Y AY:

ly(0)] < <o, ly(7)| < co.

0<z<m)

In terms of the Jacobi function, the solution of this problem can be expressed
as

a+1/2 B+1/2
oz, \) = (sin g) <cos g) R%[i)w(cos x), (1.2)
where v = p/2, p=a+ f+ 1 and
a 1—
RP(2) = ,F (—t,t oot L= Z) . (1.3)

In [11], Zayed showed the following version of the sampling theorem.

THEOREM 1.1 ([11, Example 4]). For f € L*(0,n), its Jacobi transform is
defined by

T T a+1/2 T\ B+1/2 o
F(A) = L f(=@) (Slﬂ 5) <COS 5) Riaﬁi)v(cos x)dz. (1.4)

Then F' 1is reconstructed by samples as follows:

(1) When v # 0, we have

n+7 )

i (=1)""2(n + 7)T'(n + p) ,
=0 DOy + VNI (y = VNA = (n+ )20 (0 +1)°
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(2) When v =0, we have

sm W\f - Q\ﬂsm (VA —n)
F(\) = F(0) ZF S

A more general result was obtained by Everitt, Schottler and Butzer in [4]
without assuming the existence of the canonical product of the eigenvalues.
And from this, they showed new types of the sampling theorems.

In another direction, the sampling theorems are generalized to the frame-
work of abstract harmonic analysis by replacing R with a locally compact
group. In the case of the locally compact abelian groups, Kluvanek has
proved the sampling theorem in [8]. In the non-abelian case, Dooley showed
in his paper [1] the sampling theorem for the Cartan motion group by using
the techniques of the theory of contraction of Lie group. In [5] Fithr and
Grochenig present an approach to derive the sampling theorems on locally
compact groups from oscillation estimates.

On the other hand, sampling theorems are studied as relative topics of
tomography. In [2] and [3], we study the Fourier reconstruction algorithm and
extend this algorithm to the case of Riemannian symmetric spaces. In [2] we
fix a K-type 0 and give the reconstruction formula for the function of type o
on the Riemannian symmetric space G/K. By using this, the reconstruction
formula for the band-limited function can be formally constructed. And in
the subsequent paper [3], by taking sampling points suitably, we concretely
construct the sampling function of the Radon transform on the complex
hyperbolic space. For another example, Stenzel gave the sampling theorem
which recovers the rapidly decreasing functions on Riemannian symmetric
space from the values of the sampling operator in [9]. He point out his
theorem is closest in our papers [2, 3]. We shall discuss in the next paper
the relationship between the sampling operator defined by Stenzel and our
results in [2, 3].

We shall here describe the context of this paper. In Section 2, for reader’s
convenience, we give a proof of Theorem 1.1 by using the theory of Everitt,
Schottler and Butzer. In Section 3, applying the theory of Vretare, we con-
struct the recursion formula of the sampling coefficients on the compact
semisimple Lie groups.

2 The proof of Theorem 1.1

We here introduce the method of Everitt, Schéttle and Butzer. In [4],
they only dealed with the case of the Legendre differential equation, and so
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we will apply their method to the case of the Jacobi differential equation and
gives an elementary proof of Theorem 1.1.
Let a, 8> —1 and set A, (t) = sin®*™ t cos?’*1¢. Consider the Jacobi

differential equation:
A(Amgﬁwaz(ék+p%AmAﬂy,(O<t<ig) (2.1)

with the boundary valued conditions

[v:10) = [511 (5) =0, (2:2)

where [-,-] denotes the bilinear form associated with the differential equa-
tion. In this case both endpoints are limit circle and non-oscillatry. In the
following, we only consider the case v # 0, since the case v = 0 is reduced to
the case of the Legendre differential equation. The pair of the fundamental
solutions of (2.1) is given by

{R%@v (cos2t), R%Ci)v(— cos 275)} :

Here R%ﬁ,)v denote the Jacobi function described in (1.3). For the sake of
simplicity, we put

R(t) = R(a,ﬂ_)v(cos 2t) = o Fy (7 + \F)\,’y — \F)\; a+ 1; sin? t),

N5Y
S(t) = RO (—cos2t) = 2Fa(y + VA = VA B + L cos? ).
And we set
(R(t) = ST (v + VAT (v = VA)
Pilt) = AT (o + )D(B + 1) ’ (2.3)
(1) = RO+ SO+ VAT = VA -

AN+ DI(B+1

)
After these preparations, the Kramer type kernel K (z, \) on [0,7/2] is gen-
erated by

K(z,\) = [¢1,1](0)pa(x) — [@2,1](0) 1 (). (2.5)
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A direct computation implies

[o1.11(0) = — lim A, 5(5)4 (1)
— m (v2 = MT(7 + VAT (v — V) sin?*2 ¢t cos?P+2 ¢
t—0 26+ Hl(a+HI'(B+1)
X {2F1(7+ 1 +\/X,’y+ 1 —\/X;Oé-l-Q;Sith)
+oF(y+1 +\/X,7+ 1 —\5;5+2;C082t)}
— lim (v2 = MT(y + VAT (7 — V) cos?P+2 ¢
t—0 26+ DI+ HI(B+ 1)
X oFy(y+1 +\/X,’y+ 1-— \F)\;B+2;coszt)
(Y2 = Ny + VAT (v = V)
26+ Dl(a+ I(B+ 1)
X o (B=7+1=VAB—v+1+VAB8+21)
(7> = NP8 +2)T(a + DI (y + VAT (y = V)
B+ DD+ DIB+ DIy + 1+ VOT(y+1 -/

2
1
5
By the same computation as above, we also have

1

[p2,1](0) = 5

Substituting these into (2.5), we have
K(z,\) = R(t) = R%B_),Y(cos 2t).

Therefore we can get the integral transform

19

F(\) = L " f(t)RE‘/"X’B_)W(cos 2t) Ag 5(t)dt. (2.6)
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Similarly, the interpolation function G(\) is given by

GO = K1) (3)

272 =\
= —M lim sin®**2tcos

25+2t
a+1 tor2

X o Fi(y + 1+ VA7 +1—VXa+2;sin’t)

- _m lim sin

2042 t
a+1 t—m/2

X oFi(a—v+1—=vVXa—v+1+VAa+2:sin?t)

:-QNa+UNB+U (2.7)
Ly +vVAL(y = VA) '

From the expression of (2.7), the zeroes of G(\) are A, = (y+n)? for n € Z
and Theorem 1.1 in [4] yields that ), are taken at the samples of the integral
transform (2.6).

We next compute the sampling function of (2.6). We have from (2.7) that

riny - D+ DD+ D + V) = vl = V)
VAL (7 + VAT (v = V) ’

where v denotes the polygamma function. We obtain upon taking the limit
A — A, = (v +n)? that

G\) = lim GO
(=)' (a+D)I(B+ 1) (n+1)
- TN e R (28)

Consequently, the sampling function of (2.6) can be written by

G (=1)"'2(n +9)T(n + p)

G'Aa)A=An) T+ 1Dy + VALY = VA = (n +7)%)

from which we can get the assertion of Theorem 1.1.

3 Notation for Lie groups and root systems

Let g be a semisimple Lie algebra on R and let g = £+ p be a fixed Cartan
decomposition of g. Choose a maximal abelian subspace a < p. The Killing
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form ¢, -) induces an inner product on a. Let h > a be a Cartan subalgebra
and put by = h n €. We fix an ordering in a* and denote by X% the set of
positive restricted roots of g with respect to g. We set p = %Zﬂem m(p)u,
where m(u) denotes the multiplicity of p.

We write u for the corresponding compact real form of g, that is, u =
£ + +/—1p. Denote by G, the simply connected Lie group with Lie algebra
g and by GG, K and U the analytic subgroups of G. with their Lie algebras
g, t and u, respectively. This permit us to identify the irreducible finite
dimensional representations of G. with those of G and U. We remark that
U is a maximal compact subgroup of G..

Let A = expa. We put t = b + /—1a. Fix an ordering in 1/—1t which
is compatible with the one on a. Then t is a Cartan subalgebra of u. We
normalized the Haar measure on U so that the total measure on U is 1 and
denote it by du.

Let G = KAN be an Iwasawa decomposition of G. For g € G, we
decompose as g = k(g) exp H(g)n(g), where (g) € K, H(g) € a and n(g) €
N. For X € a*, let 7> = L?>(K /M) and define the action of G on #* by

(mA(g)p) (k) = eVTRA=AHET R (567 k).

(m, #*) is called the spherical principal series representation on G. The
zonal spherical function ¢, is given by

ox(g) = J (VTR H ) g,
K

Let (s, ") denote the finite dimensional irreducible representation on
U with highest weight A € t*. As shown in [6, Theorem 4.1, p.535], A is
characterized as the following conditions:

A,
Alp, =0, ——L€Zx peXh). 3.1
‘ht </J’7 M> = ( ) ( )
We write for A the set of A € t* satisfying the relations (3.1). By means of

(3.1), we look upon A as an element in a¥. It is also known (see for instance
[10]) that

(3.2)

L By (2)Prs (@) dr — {0 (A Aa).

Here dj is expressed as

dy = (3.3)
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¢(A) denoting the Harish-Chandra c-function.

As mentioned above, the irreducible finite dimensional irreducible repre-
sentations on U can be regarded as the representations on G and G, and we
simply write them for the same symbol 7. We put

Q= {Hea;|,u(H)| < g for any,ueEJr}.

Then as pointed out in [10, p. 353], we have that
Pp(expV—1H) = p_ /=1(r+p)(exp H) (3.4)

for H € . Since the Iwasawa projection extends holomorphically from
G exp(v/—1Q) K, to a., the zonal spherical function ¢y can be regarded as a
K-biinvarinat smooth function on U. And we denote it by ¢, again.

Let f e L*(K\U/K) and define the integration transform of f with re-
spect to the kernel ¢, as

F()) = Lf(u)cm(u)du. (3.5)

Remark. From (3.4), if A = —/—1(A + p) then the integration transform
(3.5) coincides with the Fourier transform on the compact symmetric space
K\U/K.

Expanding ¢, in the Fourier series on K\U/K

oa(u) = > daca®a(u),
AeA

cp = JU ox(u)Pp(u)du (3.6)

and substituting (3.6) into (3.5), we have

= Z daca L f(u)®(u)du

- Z daca JU fw)o_ =1a+p (w)du

= Y daceaF(—V=1(A + p)). (3.7)
AeA

In this way, we can get a sampling expansion of F'. We call cj the sampling
coefficients on the compact symmetric space K\U/K.
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In the remainder of this section, we suppose that rankg = 1. Let u
denote the unique simple root of g with respect to a. We identity a* with C
via the correspondence \ — (A, py/{p, uy. For A € a¥, we define H € a. by
pu(Hy) = {u, Ay and from this, we identify a} with a, via the correspondence
)\ — H)\.

We define the values of a and /3 by the table below:

G U K « 6] P
R SO(2) {1} -2 | -3 0
Spin(n,1) (n = 2) | Spin(n + 1) Spin(n) 5 — -z | %t
SU(1,1) SU(2) U(1) 0 -3 >
SU(n,1) (n=2) | SUn+1) | SUn)xU1))| n—1 1| 0 n
Sp(n, 1) Sp(n+1) | Sp(n)xSp(l) |2n—1| 1 |2n+1
F4(,20) F4(,52) S’pzn(Q) 7 3 11

Under these parametrization, the following proposition holds.
PROPOSITION 3.1 ([6, Theorem 4.5, p. 543]). @, is expressed as follows:
(1) When 8 =-1/2, A = nu and
. (exp H) = P (cos u(H));

(2) When 8 # —1/2, A = 2npu and
Do (exp H) = P (cos 2p(H)).

Here

1
P (2) = o B (n,n +pra+1; 5 Z)
is a Jacobi polynomial of degree (o, 3).

As is well known, the Harish-Chandra c-function is expressed as

@A (N) = 20-VIAT (a + DI'(y/=1N)
PEW-IA+p) T (G(W-1A+a—B+1))

We use (3.8) to compute (3.3) and hence we obtain the following:

(3.8)

When g = —1/2,

(2a+2n + 1)n!l'(2a +n + 1)
dy, = ; .
a I'(2a + 2) (3.9)
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When § # —1/2,

(p+2n)T(p+n)T(B+H(a+n+1)
nl'(p+ DI(B+n+ 1)+ 1)

gy = (3.10)

We also note that
/2 1
J du:f A, p(t)dt = —Bla+ 1,5+ 1).
U 0 ’ 2

We also know from [6, p. 543] that the zonal spherical function ¢, is
expressed as

oalexp H) = oF} (%(p —/—1)), %(p +V/=1N\);a + 1; —sinhZM(H)> :
We thus have for H € €2 that
or(expV/—1H) = o Fy (%(p —/=1)), %(p +V=1A\);a + 1;sin2u(H)) :
And from this, we see that
or(exptH) = Rsaﬁﬁ)/\/%v(cosh 2t), (fy = g) : (3.11)

Remark. Comparing (3.11) with (2.6), we need to make a change of variable
A to —2¢/—1+/X for the proof of Theorem 1.1.

4 The recursion formula of the sampling coefficients

We keep the notation in the previous section and the assumption that
rankg = 1. When restricted attention to the rank one case, the sampling
coefficients can be directly computed by using Green’s integral formula. How-
ever for the generalization to the higher rank case, we give a group theoretic
interpretation of Theorem 1.1. In order to compute the sampling coefficients,
we need the following proposition due to Vretare.

PROPOSITION 4.1 ([10, Theorem 4.8]). We set pg = 2u when 8 # —% and
Lo = p when = —%. Then we have for X € a* that

o+ (D) PA(9) = o (N)Pr—y=1,10(9)
+ Ao (=N Prsy=1 (9) + do(N)pr(9),
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where
=y + p))e(—v=IN)
dyo(N) = v T 1 V) (4.1)
and
d0(>‘> =1- d#o()‘) - d#o(_A)' (42)

In the remainder of this section we only consider the case § # —1/2.
For the case f = —1/2, we only need to change 2n to n in the following
computations. Applying Proposition 4.1 repeatedly, we see that there exist
the functions d,, x(\), (k= —n,—n+1,...,n—1,n) such that

O =tnrn) (9P 2y Tva(0) = ) duk(Ne sy 1(vaiim(9)- (4.3)
k=—n
Remark. From the explicit expression of the Harish-Chandra c-function (3.8),
it is easy to see that the coefficients d, x(\) are rational functions on A.

For brevity we set d,x(A) = 0 when |k| > n. With the help of the
expression (3.4), (3.9) and (4.3), we can compute the sampling coefficients
Cony defined in (3.6). Indeed, we have

Conp = J;] ¢—2ﬁﬁ(u)¢2"#(u)du

- L ¢—2ﬁﬁ(u)¢fﬁ(2nu+p) (u)du (4.4)
N 2dy, k(A) Jﬂ/Q (ca,B)
: | ’ 2t)Aq . 4.
k;n B(a + 17 B + 1) 0 R\/X-ch—'y(cos t) ,B(t)dt ( 5)

By using the formula

2l (a+ 1)I(B+ 1)
Ty +14+k+VOD(y+1—k++VA)

/2
J RYP  (cos2t) Ay g(t)dt =

0 VA+kp—y

we have from (4.5) that

ol AT (p + 1)dn (V)
= 2 T(y+14+k+VAOI(y+1—k+VA) (4.6)

k=—n

Consequently, for getting the explicit expressions of the sampling coefficients,
it is sufficient to compute the values of d, x(\). We perform this to deduce
the recursion formula for d,, x(\).
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We here directly compute (4.4) and give the explicit expression of cop,.
From Proposition 3.1 and (3.11), (4.4) is written as

2 2 @)
— a, (a,8)
Cony = Blat 13+ 1) Jo R\[\ﬂ(COSQt)RW (cos2t) Ay p(t)dt.  (4.7)

We set
R(t) = RO (cos2t),  P(t) = R (cos 21).

We have from Green’s integral formula that
/2

(=) |

- BUOPOA () = [R, P) (3): (4.8)

By a straightforward calculation, we obtain

A, s(t)R()P'(t)
—n(n +
B %Aa,ﬂ(tbﬂﬁ + VA = VAa+ Lsin®t)
xoFy(—=n+1,n 4 p+ 1;a + 2;sin’t)
— w sin®* 1 Fy (v + VA, v = VA o+ 1sin 1)
a

X oFi(n+a+1,—n—B;a+2;sin’t)

and thus
lim A, s(t)R(t)P'(t) = 0.

t—m/2

Similarly we obtain

Aas(t)R(t)P(t)
_ 2NN 0 Fi (o + 1+ VR + 1= Va4 2isin®t
T a1 a()2F1(y + 1+ VA7 +1—VAa+2sin”t)
X oy (—n,n + p; o+ 1;sin’ )
= —7 sin toF (a—vy+1 Aa—v+ 1+ VA a+2;sin°t)
a

X oFy(—n,n + p;a + 1;sin’t)
and thus

. , _(=D)"mC(a+1)°T(n+ B+ 1)
A, Bas R ) ) = o A G — v @t + 1)
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Collecting these, we see that (4.8) yields

o [ (=DMl (e + DTS +n+ 1)
(A= (n+7)°) L R L Ty, VT Y v T

Therefore (4.7) implies
A (1) M4l (a+ DB+ DI +n+ 1)
Py + VDY — VA (@ + 0+ DD(p + D)X — (n +7)2)

Let us return our attention to the computation of the recursion formula
of d,, ;(X). We have from Proposition 4.1 that

P\ /=1(2u+p) (9)90_2\/?1\5@) = d2,u(_2\/_71\/x)90—2\/?1(ﬁ+ﬂ) (9)
+ dou 2V =1V N0y (v (9) + do(—2V =1V N)o_y —15(9).

We use (3.8) to compute (4.1) and (4.2) and immediately obtain that

(VN VN (e 1)
B2V =1VA) = 2WVARVA+ D(a+1) (4.9)
2 =B =N
do(2v=1V ) = e D (4.10)
where v_ = (v — 8 + 1)/2. For simplicity, we set
dy (k) = doy(=2v/=1(VA + kp)),
d-(k) = doy (2V=1(VA + kp)),
do(k) = do(—2v—1(VX + kp)).

From these, we see that

B =di(), da()=d (1), o) = (D). (411)
In particular, taking A = (n + )%, we have from (4.9) and (4.10) that
n+p)la+n+1)(p+1)

ds ((n+7) )= (2n+p)(2n+[)+1)(a+1)
n(f+n)(p+1)
da(—(n+7)%) = (2n+p)2n+p—1)(a+ 1)’
do(n + 7)) = et /)

(2n+p)* =D(a+1)

Hereafter we simply write dy = da(—(n + 7)?), d_ = da((n + 7)?), do =
do((n +7)?).
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THEOREM 4.2. Retain the above notation. the following recursion formula
holds for d, k().

(1) Whenn =1,
di—1(A) =di (1), dia(N) =d_(1), dio(N) = do(1),

where

(v + VA + VA + 1)
2VACVA+ D) (a+1)

20a = B)(¥* =)

(1—4N)(a+1)"

d+(1) =

do(l) =

(2) Whenn > 1, d,, ;(\) are determined recursively as follows:

dydpi1k(A) + d-dp1 k(N
=di(k+1)dyp—1(N) +d_(k = 1)dys+1(N) + do(k)dp (X)) — dody i (A

Proof. The case when n = 1 is already shown in (4.9) and (4.10). We suppose

that n > 1 and compute ¢_ =1, ()2 y=Tams 1) (98 2y=1y5(9) by the
different two ways. From Proposition 4.1, we have

P /=1(2u+p) (g)w—ﬁ(2nu+p) (g) = d+¢—ﬁ(2nu+2u+p) (g)
+d_p_ emu-2ut0)(9) + o101 (9)-

And thus we have

=1 ut) (DO —y=T@nut) (9P _oy—1va(9)
n+1

= Z d+dn+1,k(/\)90_2\/?1(ﬁ+ku)(g)

k=—n—1

n—1
+ Z d_dn—1,k(>\)90_2ﬁ(ﬁ+ku)(9)
k=—n+1

+ Z dodn,k()\)@fzﬁ(ﬁMu)(g)

k=—n
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Secondly using the equation in (4.3), we have
P V=I(2u+p) (9)<P_ﬁ(2w+p) (9)9072\/?1\&(9)

= wﬁ@uﬂ))(g){ > dn,kO‘)SO—z\/fl(ﬁ—s-ku)(g)}

k=—n

> b (R =y (9)

k=—n

+ d*(k)<p72\/?1(\/§+(k71)u) (9) + dO(k)(pfm/?l(\/Xch) (9)}
n+1

-y {d+(k — D po1(N) + d_(k + Dy psr(N)

k=—n—1

+ do(k)dp 1 (N) }8072ﬁ(ﬁ+lm) (9)-

Compared term by term, we can immediately obtain the desired results. [
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